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Designing	experiments	involves	a	marriage of biologi-
cal and mathematical sciences. Th e mathematical, or statistical, 
science is obvious. We use scientifi c fundamentals and principles 
that have been developed during the past century to conduct 
three types of experiments. Observational experiments are 
those designed to measure or verify an assumed constant, such 
as the velocity of light or the mass of an atom. Measurement 
experiments are those designed to measure the properties of a 
population, the members of which are variable, such as com-
modity prices, production statistics, or neutrino frequencies. As 
biologists, we are principally concerned with comparative (or 
manipulative) experiments, in which our global goal is to com-
pare or contrast two or more practices or systems that may have 
some relevance to our fi eld of scientifi c inquiry. It is the solutions, 
or the specifi c choices we must make, that are not so obvious.

In conducting comparative experiments, we routinely fol-
low the general theory of scientifi c inquiry shown in Fig. 1. We 
begin with questions and/or hypotheses that must be trans-
lated to models based on the specifi c subject matter, e.g., cotton 
(Gossypium hirsutum L.) plants, farm machinery, or hay bales. 
Th e subject matter model is translated into a statistical model, 

which is developed in concert with the statistical design. Th e 
statistical design includes both the treatment design and the 
experimental design and provides a set of rules and procedures 
that allow us to conduct the experiment. For many of us, this 
process becomes routine, such that we tend to forget the fun-
damental nature and assumptions of statistical designs, instead 
forming designs and forging ahead using time-honored and 
traditional approaches that have worked well for us in the past. 
We oft en favor familiarity, simplicity, and constancy over any 
thought of change or concept of improvement. Researchers 
must recognize that designing comparative experiments is a 
massively decision-based exercise, so that the truism “If you 
choose not to decide, you still have made a choice” (Peart, 
1980) is an appropriate concept in biological research.

Once the experiment has been conducted and the data col-
lected, the statistical analysis proceeds as determined by the 
researcher before the experiment was conducted. Th e analysis 
leads to specifi c interpretations of the results, creating inferences 
and conclusions that bring the research back to the original 
question or hypothesis. Finally, and a point oft en ignored in 
most models, is the feedback loop that comes when the experi-
ment is completed (Fig. 1). As scientists, we are intimately famil-
iar with this feedback loop, oft en correctly opining that, “Any 
good experiment leads to more questions and new hypotheses 
than it answers.” What we tend to forget or ignore is the fact 
that two types of information travel along this feedback loop: 
scientifi c answers to our biological questions and mathematical 
or statistical information that can be used to design better, more 
effi  cient, future experiments. Just as any experiment helps the 
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scientist to formulate new hypotheses, the completed experi-
ment contains a wealth of information that can be used to help 
design better and more efficient experiments in the future. This 
is my principal focus here: how to design experiments with such 
a high probability of success that failure is exceedingly rare.

Of course, that begs the question, “What makes a better or 
more efficient experiment?” Before we can answer this question, 
we must first answer the question, “Is failure an option?” For 
the Mythbusters (Savage, 2009), “failure is always an option,” 
because they are conducting measurement experiments for the 
purpose of answering simple questions with binomial answers, 
such as whether something occurs (or not) under specific cir-
cumstances. In their case, “failure” to prove a hypothesis is an 
acceptable result. For scientists, our research is so expensive, in 
both capital and emotional investment, that failure is distinctly 
NOT an option. Consider a simple experiment with two agro-
nomic production systems. The goal is to compare the means 
of System A and System B and to develop an inference and set 
of conclusions from that result. What happens when the result 

of the experiment is a P value of 0.5? There are four potential 
reasons for this result: (i) a poorly designed experiment with 
insufficient power to detect a difference between the two means, 
(ii) poorly designed treatments that did not properly reflect the 
initial question or hypothesis, (iii) an improperly conducted 
experiment without proper oversight over treatment and data 
collection protocols, or (iv) lack of true differences between the 
treatment means. For my entire career, I have followed the phi-
losophy of Frank N. Martin, former professor of statistics, Uni-
versity of Minnesota, “Everything is different from everything 
else.” What Dr. Martin meant by this is simply, if a researcher 
formulates a valid question and puts sufficient thought into 
designing the treatments, then, by design, the treatments are dif-
ferent from each other. Failure to detect differences in treatment 
means is the fault of the experiment: a failure in the experimen-
tal design, the treatment design, the experimental conduct, the 
choice of measurement variables, or some combination thereof. 
Recognizing this, savvy referees and editors are frequently reluc-
tant to accept manuscripts with “negative” results, especially 
when those results are based on an overwhelming lack of statis-
tical significance. The underlying reason for lack of statistical 
significance or evidence of differences among treatment means 
can seldom, if ever, be resolved.

My purpose here is to review the literature and to provide 
guidelines and advice on how to avoid failure in comparative 
experimentation. Essentially, my purpose is to show readers 
how to develop personal and specific answers to the question, 
“What makes a better or more efficient experiment?” This review 
presents the concepts of experimental design as four pillars 
(replication, randomization, blocking, and experimental units), 
each of which must be given proper consideration and requires a 
conscious decision regarding number, size, scale, shape, or form. 
Each of these pillars has a profound impact on the experimental 
design, data analysis, and conclusions that result from the experi-
mental conduct. As a prelude, Table 1 provides a list of terms 
that are widely used and essential to full comprehension of the 
contents of this review, including my personal definitions of each 
term, based both on my own experiences and on numerous text-
book treatments, all of which are cited here.

Table	1.	Working	definitions	of	statistical	and	experimental	design	terms	used	throughout	this	review.

Term Definition

Experiment a	planned	and	organized	inquiry	designed	to	test	a	hypothesis,	answer	a	question,	or	discover	new	facts
Treatment a	procedure	or	system	whose	effect	on	the	experimental	material	is	to	be	measured	or	observed
Experimental	unit the	smallest	unit	to	which	a	treatment	is	applied
Observational	unit the	unit	upon	which	observations	or	measurements	are	made
Block a	group	of	(presumably)	homogeneous	experimental	units	(a	complete	block	contains	all	treatments)
Experimental	design the	set	of	rules	and	procedures	by	which	the	treatments	are	assigned	to	experimental	units
Treatment	design the	organization	or	structure	that	exists	across	the	treatments	used	to	define	the	experiment
Replication the	practice	of	applying	each	treatment	to	multiple	and	mutually	independent	experimental	units
Randomization the	practice	of	assigning	treatments	to	experimental	units	such	that	each	unit	is	equally	likely	to	receive	each	treatment
Factor a	type	of	treatment;	this	can	take	on	many	forms:	quantitative,	qualitative,	ranked,	or	nested
Level a	specific	form	or	“state”	of	a	factor
Factorial	treatment a	combination	of	one	level	of	each	factor	used	to	create	a	unique	treatment	combination
Experimental	error the	variance	among	experimental	units	treated	alike,	often	symbolized	as	s2 or se

2.
Sampling	error the	variance	among	observational	units	within	experimental	units;	there	can	be	multiple	levels	of	sampling	error
Precision the	inverse	of	experimental	error,	1/ se

2

Confounding the	purposeful	or	inadvertent	mixing	of	two	or	more	effects,	such	that	no	statistical	analysis	can	separate	them

Fig.	1.	Flow	diagram	of	the	logical	steps	in	scientific	experimentation,	
including	a	feedback	loop	that	allows	for	new	scientific	hypotheses	
and	experimental	design	modifications	to	future	experiments.	Boxes	
and	arrows	with	heavier	lines	are	directly	related	to	the	theme	of	
this	review.	The	three	central	boxes	form	the	“statistical	triangle”	as	
described	by	Hinkelmann	and	Kempthorne	(2008),	the	core	of	the	
statistical	process.
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REPLICATION
Form and Scale of Replication

The act of replication serves four valuable functions in com-
parative experimentation. First, it provides a mechanism to 
estimate experimental error, which is essential to provide valid 
hypothesis tests and confidence intervals of estimators. With-
out replication, there is no ability to estimate background vari-
ation or “noise” in the estimates of treatment effects. Second, 
it provides a mechanism to increase the precision of an experi-
ment. Based on the classic formula for a standard error, SE = 
(s2/r)1/2, increasing the number of replicates has a direct, posi-
tive, and monotonic impact on experimental precision. Third, 
replication increases the scope of inference for the experiment. 
The act of replication draws a wider range of observations into 
the experiment, increasing the range of conditions encountered 
during the course of the experiment, especially if replication is 
conducted at multiple levels (explained below). Fourth, replica-
tion effects control of error. It puts the researcher in the driver’s 
seat with regard to controlling the magnitude of experimental 
error and regulating the desired level of precision or power for 
the experiment.

While replication may occur at multiple levels or scales 
within an experiment, it must, first and foremost, be applied at 
the level of the experimental unit. Replicate observations must 
occur at a spatial and temporal scale that matches the applica-
tion of the treatments (Quinn and Keough, 2002). Replication 
at the appropriate scale is essential because of the inherent 
variability that exists within biological systems and to avoid 
confounding treatment differences with other factors that may 
vary among experimental units. Consider an example in which 
16 plants are arranged with four treatments; the treatments are 
applied, not to individual plants, but to groups of four plants 
(Fig. 2). Confounding treatments with experimental units cre-
ates two problems in the ANOVA or mixed models analysis: 
(i) the fixed effect of treatments contains an unknown random 
component associated with the unestimated experimental 
error; and (ii) the only estimable error term is the observational 
error, which is expected to be smaller than the experimental 
error. The net result is both an inflated F value and an inability 
to attribute “treatment” effects specifically to the treatments 

applied. A simple rearrangement, changing the experimental 
unit from a group of four plants to a single plant (Fig. 3), cre-
ates an acceptable scale of replication for treatments. In this 
case, observational and experimental errors are confounded, 
but the loss of information in that scenario is minor. Figure 4 
represents a variation on this theme, in which there are also 
four observations made on each treatment, but the observa-
tions are organized into two sampling units within each of two 
independently assigned experimental units. The experimental 
units that receive Treatment 1 are independent of each other, 
but the sampling units (observational units) within each sam-
pling unit are not independent of each other. Thus, there are 
two levels of replication: two replicates at the treatment level 
and two more within the treatment level.

Consider an experiment designed to test the effect of burn-
ing on the soil health of native grass prairies. Because fire is so 
difficult to manipulate on an experimental basis, the researcher 
chooses to conduct the experiment on two 1-ha plots or 
experimental units, one burned and one an unburned control. 
Numerous soil cores are taken from each plot at multiple points 
in time, creating both spatial and temporal levels of replica-
tion. An analysis of the data provides a valid hypothesis test of 

Fig.	2.	Design	Example	1a:	Sixteen	plants	are	assigned	to	four	ex-
perimental	units,	each	of	which	is	assigned	to	one	treatment	(T1–T4,	
symbolized	by	ti	in	the	linear	model).	Treatments	are	confounded	with	
experimental	units	because	replication	is	conducted	at	a	scale	that	does	
not	match	the	treatment	application.

Fig.	3.	Design	Example	1b:	Sixteen	plants	are	assigned	to	16	experimen-
tal	units,	four	of	which	are	independently	assigned	to	each	treatment	
(T1–T4,	symbolized	by	ti	in	the	linear	model).	This	is	an	example	of	the	
completely	randomized	design.

Fig.	4.	Design	Example	1c:	Sixteen	plants	are	assigned	to	eight	experi-
mental	units,	two	of	which	are	independently	assigned	to	each	treat-
ment	(T1–T4,	symbolized	by	ti	in	the	linear	model).	Each	experimental	
unit	contains	two	observational,	or	sampling,	units.	This	is	another	
example	of	the	completely	randomized	design.
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a statistical difference between the two plots, both at a single 
point in time and over time points. However, the problem 
arises in interpretation of the results. If the null hypothesis 
is rejected, the next logical step is to interpret the results and 
discuss the reasons for the observed differences. Because the 
burning treatments were not replicated at the proper temporal 
or spatial scale, the comparison of burned vs. unburned is com-
pletely confounded with all other factors that differ between 
the two experimental units, including observed and unob-
served factors. Even though the statistical analysis makes sense 
and is completely valid, the science is flawed—the experimental 
design does not allow an unequivocal interpretation of the 
results. Hurlbert (1984) coined the term pseudoreplication for 
this situation in which experimental treatments are replicated 
but at a scale that is not sufficient to provide a valid scientific 
interpretation of the results, i.e., complete confounding of 
treatments with experimental units (Fig. 2).

Two solutions exist to this problem: replication at the proper 
scale in either time or space. If the experiment is time critical, 
as is frequently the case with grant-funded research, replication 
in space may be the most desirable solution. Replication must 
be conducted at the level of the treatment: both burned and 
unburned treatments must be repeated across multiple experi-
mental units, the experimental unit being a defined area that 
is burned or not burned. This could be done within a single 
prairie area or across multiple prairies, with prairies acting as 
blocks, each containing both treatments. If time is less critical 
and/or the experiment is limited to a small spatial area, then 
replication in time, e.g., across years, could be conducted at 
the proper scale but only if the treatments are independently 
randomized to experimental units in each year, i.e., the experi-
ment is repeated on a new section of prairie in each year. In this 
manner, years would serve as both a replication and a blocking 
factor, allowing both a valid statistical hypothesis test and a 
reasonable level of scientific inference to be drawn.

One potential pitfall to the approach of using years or sites 
as a blocking factor arises if both the blocking factor and the 
treatment effect are considered fixed effects. Such a design is an 
application of the randomized complete block design (Cochran 
and Cox, 1957; Petersen, 1985; Steel et al., 1996) in which the 
block ´ treatment (B ´ T) interaction is generally used as the 
error term. Strictly speaking, an interaction between two fixed 
effects is also a fixed effect. If blocks, treatments, and their inter-
action are all fixed effects, there is no valid F test for treatments 
(Cochran and Cox, 1957; Quinn and Keough, 2002). Quinn 
and Keough (2002) advised testing for the presence of B ´ T 
interaction using Tukey’s test for nonadditivity. Appendix 1 
shows the SAS code for Tukey’s single-degree-of-freedom test. 
If the null hypothesis of additivity is rejected, this suggests that 
either a transformation or an alternative distribution is war-
ranted (Gbur et al., 2012). Alternatively, care should be taken in 
designing such experiments to allow the blocking factor to be 
treated as a random effect, e.g., in which each block could be con-
sidered a random observation from a larger population of levels. 
If the blocking factor can reasonably be assumed to have a ran-
dom effect, then the B ´ T interaction can also be assumed to be 
a random effect, allowing it to serve as a valid error term.

When a treatment factor is not replicated at the proper scale, 
the confounding created by the lack of treatment replication 

extends through the entire experiment. For example, consider 
the experiment with two burning treatments described above 
and assume that each of the two plots contains 10 native grass 
species or mixtures replicated in a randomized complete block 
design. This design might appear to be a factorial treatment 
arrangement with a 2 ´ 10 treatment structure but in reality 
is two experiments, each conducted under different conditions 
(burned vs. unburned). Species are replicated at the proper scale 
but burning treatments are not. At the scale on which burn-
ing is applied, there are two treatments and two experimental 
units. While statistical software can always create a test statistic 
and P value for both main effects and the species ´ fire interac-
tion, these tests are not necessarily valid or easily interpreted. 
The researcher eventually encounters difficulty in interpreting 
both the main effect of fire and the species ´ fire interaction. 
Because the main effect of fire is completely confounded with 
the two large experimental units, the biological or physical 
interpretation of the interaction suffers from the same fate. 
Due to the confounding, there is only a limited amount of 
interpretation that is possible due to the limitations of the 
experimental design. One cannot conclusively attribute a sig-
nificant interaction to the effects of fire alone as a factor inter-
acting with species. In a case such as this, analysis of the inter-
action effects should focus on the factor that is replicated at the 
proper scale, i.e., simple effects of species within fire treatments, 
using “fire” to represent different conditions under which the 
treatments are evaluated. In so doing, the larger factor, fire, is 
treated almost as a macroenvironmental factor, which forms 
the various conditions under which the main experiment was 
repeated. The prudent researcher would point out that “fire” is 
the defining variable but that other factors may be confounded 
with fire. This is analogous to the very common practice of 
repeating experiments across multiple locations and years for 
the purpose of assessing treatment differences under different 
environmental circumstances. As long as no attempt is made 
to attribute simple effects of interactions to unreplicated envi-
ronmental variables, which cannot be conclusively resolved, the 
researcher is relatively safe from criticism.

The first “replication” step in designing most experiments is 
to explicitly define the experimental unit, the unit that forms 
the first level of replication (Table 1). Following establishment 
of the experimental unit and a decision about how to replicate 
treatments at the proper scale, additional levels of replication 
can be designed into the experiment, moving up the scale to 
larger units or down the scale to smaller units, or both. Two 
general questions are pertinent to this process: (i) what scales of 
replication are necessary to accomplish the experimental goals, 
and (ii) how much resources should be used to accomplish repli-
cation at each of the desired levels? The answer to the first ques-
tion is largely biological but partly statistical. First and foremost, 
the scale of replication depends on the inferences desired and 
on exactly how data are to be collected. Replication at the scale 
of the experimental unit is almost always necessary to estimate 
a proper and unbiased error term. Experimental objectives that 
demand repetition across a range of environmental conditions 
suggest a need for additional replication at a scale larger than the 
experimental unit. Examples include locations, years, manage-
ment factors, etc. At the other extreme, many variables cannot 
be measured on a whole experimental unit, demanding some 
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method of subsetting or subdividing experimental units into 
multiple observational units, i.e., replication at a scale below the 
experimental unit level. The answers to the second question lead 
to consideration of the number of replicates.

Number of Replicates

Two issues exist with respect to the number of replicates 
required to carry out an adequate experiment: (i) the number 
of replicates; and (ii) the distribution of replicates across the 
various forms of replication. A rich body of literature exists on 
the latter topic, generally falling under the topic of resource 
allocation (e.g., Brown and Glaz, 2001; Gordillo and Geiger, 
2008; McCann et al., 2012).

Experimental replication can occur at four basic levels 
within the experiment: (i) the experimental unit, as discussed 
above; (ii) replication of the entire experiment, as with mul-
tiple locations and/or years; (iii) sampling at one or more levels 
within experimental units; or (iv) repeated measures. Classical 
resource allocation theory is based on having accurate estimates 
of the variance components from previous experiments. For 
example, consider an experimental situation in which field 
studies repeated at multiple locations are an annual activity, 
such as uniform cultivar evaluations (e.g., Yaklich et al., 2002). 
Decisions regarding the relative numbers of locations, years, 
and replicates are always critical in designing efficient future 
experiments. An ANOVA or mixed models analysis provides 
information that can be used to develop these inferences (Table 
2), provided that the estimates have sufficient degrees of free-
dom to be accurate. Variance component estimates are inserted 
into the formula for the variance of a difference between two 
treatment means (VDTM):

2 2 2 2
TLY TL TY

DTM 2 eV
rly ly l y

æ ös s s s ÷ç ÷= + + +ç ÷ç ÷çè ø

where r, l, and y are the numbers of replicates, locations, and 
years of future potential experiments, respectively, and the 

variances are defined in Table 2. It is always clear from these 
exercises that the number of locations and/or years should be 
maximized relative to the number of replicates (e.g., McCann 
et al., 2012). The only situation that favors maximizing the 
number of replicates is when all the treatment ´ environment 
interactions are zero, which is rarely the case. Having recog-
nized this general principle for many years, numerous plant 
breeders conduct family-based selection protocols using multi-
ple locations, chosen to represent the target population of envi-
ronments, with only a single replicate of each family present at 
each location. While such a design is often considered heretical 
for publication purposes, it can be extremely resource efficient 
for the purposes of maximizing efficiency in a breeding pro-
gram. This methodology can be extended to nearly any form of 
replication, both larger than the experimental unit and smaller 
than the experimental unit. The general guideline to replicate 
the largest units to the maximum allowed by the experimental 
budget and logistical restrictions is nearly always the rule.

The number of replicates and the distribution of those num-
bers across the various forms of replication is one of the most dif-
ficult and complex decisions in designing an experiment. Based 
on my experiences teaching and consulting on this topic, this is 
the single most important and most often ignored topic in exper-
imental design. The number of replicates has a direct, highly pre-
dictable, repeatable, and tangible effect on precision and the abil-
ity to detect differences among treatments. Despite this fact, few 
agronomic researchers have ever conducted a meaningful power 
analysis with the goal of designing a better experiment.

Power is the probability of rejecting a null hypothesis that is, in 
fact, false. Following Dr. Martin’s philosophy, properly designed 
treatments, evaluated or measured with the proper measurement 
variables and properly administered throughout the experiment, 
will result in significant differences between treatment means only 
when a sufficient level of replication was used. If all else was done 
properly, the failure to detect differences among treatment means 
was due to an insufficient and/or improper scale of replication. 
Designing experiments that are expected to have a high level of 
power is our principal mechanism to avoid this result.

Gbur et al. (2012, Ch. 7) provided the most extensive and 
thorough treatment available for developing power analyses, 
providing numerous examples and SAS code, including vari-
ables that follow non-normal distributions and different levels 
of replication. The following steps are required to implement 
the Gbur et al. (2012) probability distribution method to esti-
mate the power of a future hypothetical experiment:

1. Obtain an estimate of experimental error variability from 
previous experiments conducted in the appropriate field 
or laboratory setting or from the literature.

2. Identify the distribution of the variable of interest, e.g., 
normal, binomial, Poisson, binary, etc.

3.  Determine the P value that will be used to set detection 
limits [a = P(Type I error)] and the minimum difference 
between treatments to be detected (d).

4. Choose an experimental design structure that includes all 
desired blocking arrangements and one or more levels of 
replication.

Table	2.	Analysis	of	variance	structure	for	an	experiment	conducted	
in	a	randomized	complete	block	design	repeated	at	multiple	locations	
and	years,	assuming	all	effects	to	be	random.	Mixed	models	analysis	
provides	direct	estimates	of	the	five	variance	components	in	the	table,	
using	restricted	maximum	likelihood	estimation	methods.

Source	of	 
variation† df† MS†

Expected	values	of	
mean	squares†

Locations l	–	1
Years y	–	1

L ´	Y (l	–	1)(y	–	1)

Blocks	within	L	´	Y ly(r	–	1)

Treatments t	–	1 MST s2 + rsTLY
2 + rysTL

2 
+ rlsTY

2 + rlysT
2

T	´ L (t	–	1)(l	–	1) MSTL s2 + rsTLY
2 + rysTL

2 

T	´	Y (t	–	1)(y	–	1) MSTY s2 + rsTLY
2 + rlsTY

2 

T	´ L ´	Y (t	–	1)(l	–	1)(y	–	1) MSTLY s2 + rsTLY
2 

Experimental	error ly(r	–	1)(t	–	1) MSe s2 

†	L,	locations;	Y,	years;	T,	treatments,	l,	number	of	locations;	y,	number	of	years;	
r,	number	of	blocks;	t,	number	of	treatments.
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5. Create an exemplary data set that matches the desired 
experimental design structure and contains two “dummy” 
treatments with constant values across all experimental 
and observational units of the data set. To create such an 
exemplary data set, a single value must be chosen for all 
the replication factors in the hypothetical experiment.

Appendix 2 shows the SAS code to accomplish a single 
power analysis in three coding steps:

1. Create an exemplary data set for a completely random-
ized design with two treatments, four experimental units 
per treatment (replicates), and four observational units 
per experimental unit.

2. Compute the noncentrality parameter of the F distribution 
with the appropriate degrees of freedom under the alterna-
tive hypothesis that the two treatments have difference d.

3. Compute the power from the noncentrality parameter.

Appendix 3 shows a modified version of this SAS code that 
contains a macro, automating the code to allow estimation of 
the power for numerous experimental design parameteriza-
tions. This code estimates the power for this design with a 
number of replicates ranging from four to eight and the num-
ber of observations per experimental unit ranging from two 
to four, with a wider range of values displayed in Fig. 5. Such 
a graphical display easily allows any researcher to choose one 
of multiple design arrangements that meet the expected target 
for power, which is often set at 0.8 (80%). For example, the 
results of this exercise easily validate the statements made above 
regarding resource allocation, that the largest sized replication 
factors (experimental units in this case) have the greatest direct 
impact on improving future experiments. In the case of Fig. 5, 
using five different values for the number of observational units 
per experimental unit, any one of five different scenarios can be 
chosen for use in future experiments, each with an expectation 
of having power »0.8.

Exercises such as this one can be created for any experimental 
design and sampling scheme imaginable (Gbur et al., 2012). 
Furthermore, the effectiveness of power predictions can be eval-
uated directly in terms of empirical detection limits for com-
pleted experiments. For example, Casler (1998) completed an 
extensive and expensive series of experiments that were designed 
to provide means and variance estimates to select for increased 
forage yield in several species and using several breeding meth-
ods. The next step, following selection and synthesis of the 
progeny populations, was to compare the progeny populations 
created by the various selection methods. Because very small dif-
ferences between populations were expected, and the goal was 
to detect these differences with a reasonable P value, a power 
analysis was essential before planning the second experiment 
(Appendix 4). While statistical theory, common sense, and the 
power analysis all suggested the need for four to six locations 
(Fig. 6), practical considerations led to the choice of three loca-
tions and 16 replicates in a randomized complete block design 
(Casler, 2008). The net result of this power exercise was a series 
of experiments with LSD values ranging from 2 to 3% of the 
mean and a high frequency of P values <0.01 (Casler, 2008), i.e., 
an extremely successful and satisfying result.

Unreplicated Experiments

Numerous special situations exist for which there is a strong 
temptation or need to devote all resources toward multiple 
treatments and none to replication or independent observa-
tions of those treatments. Many on-farm experiments repre-
sent a classic example of this situation. Farmers and outreach 
personnel see value in trying different treatments on a very 
large scale but see little value in replication of those treatments. 
Researchers organizing these types of field experiments have 
three options: (i) conduct the experiments on multiple farms, 
using farms as blocks; (ii) use control-plot designs in which 
one control treatment is interspersed with the other treat-
ments, optimally in an every-other-plot pattern; or (iii) use a 
combination of both approaches. Control-plot designs were 
developed in the early 20th century (Pritchard, 1916; Richey, 
1924) and their popularity lasted through the 1970s, largely for 
use in evaluating extremely large numbers of lines or families 
for plant breeding (Baker and McKenzie, 1967; Mak et al., 
1978). These designs fell out of favor when it became clear that 
devoting half of the experimental units to a single treatment 
or cultivar was highly inefficient (Melton and Finckner, 1967), 
and modern spatial analysis methods were just emerging (Gae-
ton and Guyon, 2010). Nevertheless, they remain a very viable 
option for small on-farm experiments.

Augmented designs represent a specific form of design 
that can handle hundreds or thousands of treatments, most 
of which are unreplicated. Treatments are generally cultivars 
or breeding lines that must be evaluated over multiple loca-
tions and for which seed supplies are often highly limiting and 
extremely valuable (Casler et al., 2000, 2001). Augmented 
designs involve a large number of unreplicated treatments 
organized into very small blocks, often blocks of only five 

Fig.	5.	Estimated	power	of	a	hypothesis	test	designed	to	detect	a	treat-
ment	difference	of	5%	of	the	mean	with	a	Type	I	error	rate	of	0.05,	
variance	component	estimates	of	5	and	10	(experimental	and	sampling	
errors,	respectively),	and	varying	numbers	of	experimental	units	and	
observational	units	(s	=	3–20).	The	dashed	line	represents	power	=	0.8	
and	illustrates	that	different	replication	and	sampling	scenarios	can	be	
created	to	achieve	the	same	result.
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experimental units (Lin and Poushinsky, 1983, 1985; Casler et 
al., 2000, 2001). The center plot within each block consists of 
a single cultivar that serves the purpose of error estimation and 
spatial adjustment on a large scale. Additional check cultivars 
are added at random to individual blocks to augment error esti-
mation and to estimate the spatial effects on a finer or smaller 
scale (Lin and Poushinsky, 1983, 1985).

A variation of this theme has recently emerged in the field 
of participatory research: mother–daughter designs (Mor-
rone and Snapp, 2001; Snapp et al., 2002; van Eeuwijk et al., 
2001). These designs are generally focused on a small number 
of practical treatments in which farmers or small landholders 
have a genuine interest and/or a sense of ownership. The most 
traditional application involves the use of a “mother” trial, con-
ducted with proper replication and randomization on an exper-
imental research station, accompanied by numerous “daughter” 
trials conducted by various landholders (Fig. 7). Mother trials 
generally include all possible treatments of interest in a region 
or village, while daughter trials include only a small number 
of treatments of interest to the participant or landholder. Each 
participant is free to design and/or choose the treatments of 
greatest interest and value for the individual farm. Daughter 
trials are linked to each other and to the mother trial by the 
fact that all treatments are represented in the mother trial and 
some treatments are repeated across multiple daughter trials 
(van Eeuwijk et al., 2001).

Lastly, situations occasionally arise in which experimental 
units are so expensive that the tradeoff between replication and 
additional treatments may favor the latter. As an example, to be 
of greatest value to both the practical and scientific communi-
ties, grazing research should be conducted at multiple levels or 
stocking rates (animals per hectare). Because grazing research 

facilities are limited in the number of discreet paddocks avail-
able for use as independent experimental units, and because 
experimental units are very costly, it is generally impossible 
to include all three desired factors: treatments, grazing levels, 
and replicates. Bransby (1989) proposed unreplicated designs, 
with regression-based statistical analysis of multiple treatments 
repeated across multiple grazing levels, as an alternative to clas-
sically replicated designs.

RANDOMIZATION
The principle of randomness applies to the proper conduct 

of experiments at two levels. First, a careful definition of the 
experimental materials and facilities to be included in the exper-
iment demands that each be properly sampled to ensure that it is 
properly represented. Whether the treatments derive from bags 
of seed, livestock, pathogens, or field sites meant to represent 
one or more environmental variables, the population must be 
defined and a random or representative sample must be chosen 
to represent the population. Populations can be defined very 
broadly with a clear intent to choose a random sample. This is 
often the case when the desired inference is to represent a popu-
lation that is larger than the sample, leading to the choice of a 
random effect (Fig. 8). Conversely, when an inference is desired 

Fig.	6.	Estimated	power	of	a	hypothesis	test	designed	to	detect	a	treat-
ment	difference	of	10%	of	the	mean	with	a	Type	I	error	rate	of	0.05,	
variance	component	estimates	of	0.02	and	0.2	(treatment	´	location	
interaction	and	experimental	error,	respectively),	and	varying	numbers	
of	locations	(l	=	2–6)	and	blocks.	The	dashed	line	represents	power	=	
0.8	and	illustrates	that	different	combinations	of	number	of	locations	and	
replicates	can	be	created	to	achieve	the	same	or	similar	expected	results.

Fig.	7.	Illustration	of	mother–daughter	experimental	designs	for	two	
villages	of	participatory	researchers,	in	which	mother	trials	(M)	are	
conducted	by	researchers	on	experimental	stations	and	daughter	trials	
(D)	are	conducted	by	individual	farmers	on	their	landholdings.



Agronomy	 Journa l 	 • 	 Volume	107, 	 I s sue	2	 • 	 2015	 699

only for a small number of levels, each of which can be included 
in the experiment, the choice is usually to treat this as a fixed 
effect. Selecting a random sample remains a critical component 
of defining and applying the treatments, even for fixed effects, to 
ensure that the inference matches the hypothesis.

The second aspect of randomization concerns the assignment 
of treatments to experimental units. By definition, in a properly 
randomized experiment, every treatment is equally likely to be 
applied to every experimental unit. The simplest application of 
this definition is to randomly apply r replicates of t treatments 
to rt experimental units, without regard to order, structure, 
or priority. This is the completely randomized design (CRD), 
which consists of one block, represented in both Fig. 3 and 4. 
More complicated designs, involving hierarchical or multistep 
randomization are discussed below.

Randomization provides two key services in experimental 
designs: (i) unbiased estimation of treatment means and experi-
mental errors; and (ii) a precaution against a disturbance that 
may or may not arise. Randomization is our insurance policy; like 
insurance, we must pay for it, not with funds, but with some time 
spent conducting randomizations and some inconvenience in the 
conduct of the experiment; however, the benefits nearly always 
outweigh the costs. If there were no field gradients, no hidden 
spatial variation, and independent observations of our treatments 
provided uniform results, we would not need to randomize or 
replicate our treatments; we would be chemists or physicists. Of 
course, the field of biology is rife with hidden sources of variability, 
including many sources that are unknown or unexpected during 
the course of conducting an experiment. Randomization helps to 
ensure that those unknown or unexpected sources of variation do 
not introduce biases, confounding, or elimination of valid hypoth-
esis tests during the course of the experiment.

This brings up the issue of which is better: randomization 
or interspersion (Hurlbert, 1984). Randomization is a strict 

mathematical process in which a random number generator is 
used to order the treatments. Interspersion is a subjective con-
cept in which the researcher strives to achieve balance and avoid 
“clumping” of certain treatments or replicates of treatments. 
Sometimes randomization can result in experimental designs 
that appear to have undesirable clumping or patterns. These pat-
terns can result in potential bias or confounding to treatment 
effects if there are underlying spatial variation patterns that are 
correlated with the randomization plan (Martin, 1986). They 
can also lead to significant differences in the level of precision 
for statistical comparisons: treatments that have high average 
distances between replicates will tend to have higher variances 
than those with low average distances between replicates (van 
Es and van Es, 1993). Spatially balanced complete block designs 
(van Es et al., 2007) were developed to solve this potential prob-
lem, helping to ensure that both randomization and intersper-
sion are key components of any design. These designs promote 
spatial balance among treatment comparisons and do not allow 
treatments to occur in the same position in different blocks.

BLOCKING
Blocking is utilized in experimental designs for one or both 

of two purposes: (i) for precision, to create groups of experi-
mental units that are more homogeneous than would occur 
with random sampling of the entire population of experimental 
units; or (ii) for convenience, to allow different sizes of experi-
mental units when larger plots or larger experimental areas are 
required for the application of one factor compared with other 
factors. In addition, much like randomization, blocking can 
be thought of as an insurance policy against disturbances that 
may or may not arise during the course of the experiment. I can 
cite examples of the use of randomized complete block designs 
(RCBD) being used to successfully recover from post-establish-
ment disturbances to colleagues’ experiments, including mili-
tary maneuvers (three different incidents), a house mover, way-
ward herbicide sprayers (twice), a motorcycle gang, an angry 
and vengeful former employee, and partying students.

The RCBD design is the simplest blocking design (Fig. 9), 
and it can be used with any of the treatment structures shown 
in Table 3. The only restriction on the RCBD design is that 
block size is equal to the number of treatments. Because some 
factorial experiments can become very large very quickly, com-
posite designs and fractional factorials represent two treatment 
designs that are intended to reduce the number of treatments 
from a full factorial to a meaningful subset designed to focus 
on specific treatment comparisons. Reducing the number of 
treatments in this manner reduces both the cost of the experi-
ment and the block size, potentially improving the precision for 
hypothesis tests.

Treatment design is frequently a driver of experimental 
design (Table 4). Indeed, many experimental designs exist only 
as a randomization restriction of the basic RCBD design. The 
most common of these is the split-plot family of designs, which 
exist only as a specific randomization restriction that is placed 
on certain factorial experiments (Fig. 10). A common miscon-
ception of the split-plot randomization is that they represent 
an experimental design per se, e.g., a split-plot with Factor A as 
the whole-plot factor and Factor B as the subplot factor. In fact, 
this represents an incomplete description of the experimental 

Fig.	8.	Flow	diagram	illustrating	the	decision	rule	for	fixed	vs.	random	
effects	for	each	factor	in	an	experiment.	The	first	step	is	to	ask	the	
question	about	the	desired	inference,	which	leads	to	the	decision	of	
fixed	vs.	random.	Following	this	decision,	the	experimental	treatments	
can	be	chosen	as	desired	to	meet	the	chosen	inference.
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design because it is missing the basic design for Factor A, the 
whole-plot factor. For example, the design in Fig. 10 illustrates 
a RCBD with two blocks for Factor A, with Factor B acting as 
a “split” of each Factor A whole plot. More precisely, Fig. 10 rep-
resents a split-plot randomization restriction of a RCBD design. 
As an illustration, Casler et al. (2000, 2001) used a split-plot 
randomization of a Latin square design in which the whole-plot 
factor was arranged in a 5 ´ 5 or 6 ´ 6 Latin square.

Split-plot randomizations are extremely flexible and versatile, 
applicable to factorial treatment designs with two or more fac-
tors. They are frequently used strictly for convenience, when 
the whole-plot factor requires larger experimental units than 
the subplot factor(s). Common examples include tillage treat-
ments, irrigation treatments, and planting dates. Their versatil-
ity is illustrated by the fact that multiple splits can be easily 
incorporated into the design, either for the purpose of logistics 
and convenience or for statistical purposes. A further variation 
is the split block or strip plot, in which there are two whole-plot 
factors that are stripped across each other. Care must be taken 
to ensure that both whole-plot factors are randomized inde-
pendently and differently in each replicate of the experiment, 
rather than stripping one factor across the entire experiment 
without rerandomization. Combined use of both strip-plot and 
traditional split-plot “splits” in one experiment (Riesterer et al., 
2000) illustrate both the complexity and versatility available in 
these randomization restrictions.

In the simplest split-plot design, with two factors, the statis-
tical concept is illustrated as follows. There are two error terms, 
one for the whole plot (Ea) and one for the subplot (Eb). Their 
expected values are: E(Ea) = σ2(1 + r) and E(Eb) = σ2(1 – r), 
where σ2 is the unit variance and r is the autocorrelation coef-
ficient. The statistical success of the design relies on the empiri-
cal relationship Ea > Eb, which is caused by values of r > 0. 
Split plots that are used for statistical reasons are meant to take 
advantage of this relationship, such that precision is increased 
for the subplot factor and the interaction at the expense of 
precision on the whole-plot factor and whole-plot-based simple 
effects. Researchers who design experiments using the split-plot 
concept for convenience will often hope for r » 0, or Ea » Eb, 

especially when they prefer not to have a difference in precision 
between the whole-plot and subplot factors.

Blocking designs that involve arranging the blocks in a lin-
ear manner, without any prior knowledge of spatial variation 
among the experimental units, can severely reduce the prob-
ability of success for an experiment. Because many experimen-
tal research stations consist of large and visually uniform fields, 
bidirectional blocking is an excellent insurance policy against 
guessing wrong on the blocking arrangement. Numerous 
experimental design families are available for purposeful bidi-
rectional blocking (Table 4). The simplest of these is the Latin 
square, in which the number of treatments is restricted to equal 
the number of replicates. Due to this restriction, Latin square 
designs are uncommon in field research, although they can 
be highly effective for small experiments (Casler et al., 2007). 
Incomplete block designs, such as the lattice square and the 
incomplete Latin square, relax this requirement and offer con-
siderable options for both reducing block size and creating bidi-
rectional blocking to remove spatial variability in two direc-
tions. Alpha designs and row–column designs offer additional 
flexibility and options for varying the number of treatments, 
number of replicates, and block size (John and Eccleston, 1986; 
Patterson and Williams, 1976; Williams, 1986). In particu-
lar, these designs have become very common in tree breeding 

Table	3.	List	of	some	common	treatment	structures	utilized	in	designing	
comparative	or	manipulative	experiments.

Number	of	
factors

Design	name	
or	definition Defining	characteristics

One unstructured there	is	no	structure	or	organization	 
to	the	treatments

Two	or	more nested	
structure

factors	have	levels	that	are	not	repeated	
or	have	the	same	meaning	at	all	levels	
of	the	other	factors	(Schutz	and	

Cockerham,	1966)

Two	or	more full	factorial	
design

each	factor	has	a	specific	number	of	
levels	that	are	repeated	(have	the	same	
definition	and	meaning)	over	all	levels	
of	the	other	factors;	the	number	of	

treatment	combinations	is	the	product	
of	the	number	of	levels	of	each	factor	

(Cochran	and	Cox,	1957)

Two	or	more confounding	
design

a	full	factorial	in	which	a	higher	order	
interaction	term	is	sacrificed	as	a	

blocking	factor	in	order	to	achieve	a	
reduction	in	block	size	(Cochran	and	

Cox,	1957;	Cox,	1958)

Two	or	more composite	
design

a	subset	of	a	factorial	designed	
to	severely	reduce	the	number	of	
treatments	required	to	evaluate	the	
main	effects	and	first-order	interac-
tions	using	regression-based	modeling	
(Draper	and	John,	1988;	Draper	and	Lin,	

1990;	Lucas,	1976)

Two	or	more fractional	
factorial

a	partial	factorial	arrangement	in	which	
only	a	subset	of	the	factorial	treatments	
is	included,	usually	based	on	choosing	
a	higher	order	interaction	term	as	the	
defining	contrast	(Cochran	and	Cox,	

1957;	Cox,	1958)

Two	or	more repeated	
measures

one	or	more	of	the	treatment	factors	
is	observed	over	multiple	time	points	
without	rerandomization	of	treatments	
to	experimental	units	(Milliken	and	

Johnson,	2009)

Fig.	9.	Design	Example	2:	Sixteen	plants	are	assigned	to	eight	experimen-
tal	units.	Experimental	units	are	grouped	into	two	blocks,	each	of	which	
contains	a	number	of	experimental	units	exactly	equal	to	the	number	of	
treatments	(T1–T4,	symbolized	by	ti	in	the	linear	model).	Each	experi-
mental	unit	contains	two	observational,	or	sampling,	units.	This	is	an	
example	of	the	randomized	complete	block	design	with	sampling.
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programs that are typically located in mountainous regions 
with little or no level or flat topography.

The last three families of designs in Table 4 each contain 
considerable flexibility and versatility intended to solve par-
ticular problems. The blocks-in-reps and the reps-in-blocks 
designs were designed for large random-effects experiments in 
plant and animal breeding, with the goals of precisely estimat-
ing genetic parameters of populations (Schutz and Cockerham, 
1966). These designs continue to be useful in breeding and 
selection experiments. Balanced and partially balanced incom-
plete block designs represent a diverse family of designs meant 

to create large numbers of very small incomplete blocks that 
allow all potentially important treatment comparisons to be 
made. Cochran and Cox (1957, Ch. 9, 10, and 11) provided a 
thorough treatment of these designs, complete with numerous 
plans and analytical details. Lastly, control-plot designs (Baker 
and McKenzie, 1967; Mak et al., 1978), augmented designs 
(Murthy et al., 1994; Scott and Milliken, 1993; Wolfinger et 
al., 1997), and modified augmented designs (Lin and Poush-
insky, 1983, 1985; Lin and Voldeng, 1989) were designed to 
accommodate large numbers of treatments in which there is 
considerable lack of uniformity in the number of replicates per 
treatment or some treatments are completely unreplicated.

Finally, there is a direct, positive correlation between design 
complexity and efficiency. This relationship is moderated by 
experiment size and the nature of spatial variability. In general, 
the simplest designs (CRD and RCBD) are the least efficient 
designs, an effect that is magnified as the number of treatments 
increases or as spatial variability becomes stronger and more 
unpredictable. Either a large number of treatments or unpredict-
able spatial variation can severely undermine the efficiency of the 
CRD and RDBD. The RCBD is extremely popular due to its sim-
plicity (van Es et al., 2007), but when the number of treatments 
is >20, all researchers should consider the general principle that 
more blocks and smaller blocks are nearly always more efficient 
than complete blocks (Legendre et al., 2004; Lin and Voldeng, 
1989). Numerous options exist for some relatively simple incom-
plete block designs that allow efficient estimation and control of 
both predictable and unpredictable spatial variation and create 
favorable interspersion patterns for treatment randomizations.

SIZE OF EXPERIMENTAL UNITS
The last pillar of experimental design is the least understood 

and possesses the least amount of theoretical results to support 
empirical observations. This subject receives little or no coverage 
in the textbooks that deal with experimental design (e.g., less 

Table	4.	Experimental	design	families	organized	according	to	type	and	complexity	of	blocking	arrangements.

Number	 
of	potential	blocking	

levels
Treatment	design	 
(from	Table	3)

Experimental	 
design	options Defining	characteristics References

One any	structure	 randomized	complete	block block	size	=	number	of	treatments	(t) Steel	et	al.	(1996)

Multiple	and	flexible full	factorial split	plot	and	variations,	 
split	block	(strip	plot)

design	contains	multiple	sizes	of	experimental	units,	 
one	for	each	level	(or	“split”);	larger	experimental	 
units	may	be	required	for	convenience	but	will	be	

associated	with	increased	error	if	Error(a)	>	Error(b)

Cochran	and	Cox	(1957),	
Cox	(1958),	Petersen	

(1985),	Steel	et	al.	(1996)

Bidirectional	and	
structured

any	structure Latin	square,	Graeco-Latin	
square,	lattice	square,	
incomplete	Latin	square

bidirectional	blocking	in	perpendicular	directions;	
number	of	replicates	and	treatments	are	 

highly	restricted	in	some	designs

Cochran	and	Cox	(1957),	
Petersen	(1985),	Steel	et	

al.	(1996)

Multiple	and	flexible,	
bidirectional

any	structure alpha,	row–column treatments	arranged	in	rows	and	columns;	 
extremely	flexible	with	regard	to	number	of	 

treatments,	number	of	replicates,	and	block	size

John	and	Eccleston	(1986),	
Patterson	and	Robinson	
(1989),	Williams	(1986)

Multiple	and	flexible nested	structure blocks	in	reps	(sets	in	 
reps),	reps	in	blocks	 

(reps	in	sets)

treatments	are	randomly	divided	into	sets;	block	 
size	=	number	of	treatments	per	set;	good	for	 

inferences	on	random	effects

Schutz	and	Cockerham	
(1966),	Casler	(1998)

Multiple	and	flexible any	structure balanced	or	partially	balanced	
incomplete	blocks

potentially	large	reduction	in	block	size	with	 
flexibility	in	both	structure	and	field	layout;	 

block	size	(k)	may	be	t1/2	or t1/3

Cochran	and	Cox	(1957),	
Cox	(1958),	Petersen	

(1985)

Multiple	and	flexible any	structure	
with	variable	

replication	across	
treatments

control	plot,	augmented,	
modified	augmented

designed	to	accommodate	extremely	unbalanced	
treatment	structures	and	unequal	replication	 
across	treatments;	no	restrictions	on	numbers	 

of	treatments	and	replicates

Chandra	(1994),	Lin	and	
Poushinsky	(1983,	1985),	
Wolfinger	et	al.	(1997)

Fig.	10.	Design	Example	3:	Sixteen	plants	are	assigned	to	eight	experi-
mental	units.	Experimental	units	are	grouped	into	two	blocks,	each	of	
which	contains	a	number	of	experimental	units	exactly	equal	to	the	
number	of	treatments	(T11–T22).	Within	each	block,	the	experimental	
units	are	blocked	again	according	to	two	levels	of	Factor	A	(ai).	Each	
whole	unit	or	whole	plot	of	Factor	A	is	further	subdivided	according	
to	two	levels	of	Factor	B	(bj).	This	is	an	example	of	a	randomized	com-
plete	block	design	with	a	split-plot	randomization	restriction	(Factor	
A	=	whole	plots;	Factor	B	=	subplots).
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than one page in Steel et al., 1996), perhaps owing to the lack of 
theoretical results. The concept of optimal plot (experimental 
unit) size is very old, predating Fisher’s early concepts of experi-
mental design and analysis of variance. The concept is based 
on Smith’s Law (Smith, 1938), which derived from the general 
observation of a negative asymptotic relationship between 
variance (on a per-unit or single-plot basis) and plot size (Fig. 
11). Smith’s Law seems to be a general phenomenon that holds 
across a wide range of species and environmental conditions 
(LeClerg, 1966). Smith’s Law is most frequently modeled with 
log-linear regression equations, the slope of which (b) may vary 
widely across species and environments (LeClerg, 1966), reflect-
ing differential levels of spatial homogeneity.

The asymptotic nature of this relationship creates a conun-
drum for any researcher who seeks to modify plot size and to 
predict the statistical consequences of such a change (Fig. 11). For 
small initial plot sizes, any change in plot size is expected to have 
a large effect on mean unit variance. Conversely, for researchers 
who are using relatively large plots, relatively large changes in 
plot size may have little or no impact on the mean unit variance. 
Of course, the distinction between “small” and “large” plots is 
completely relative, probably varying with species, soil types, 
measurement variables, and numerous other factors. In my own 
research program, we consider a “small” plot to be the small-
est area that can be planted with standard equipment (five-row 
drilled plots, 0.9 by 1.2 m). Conversely, we consider a “large” plot 
to be the longest distance that can be planted with one rotation 
of the cone planter without having significant gaps in seed place-
ment (15 m) and a width equal to any multiple of 0.9 m (multiple 
passes of the cone planter). For any given experiment, our choice 
of plot size depends on seed and land availability and prior esti-
mates of the slope of the log-linear curve in Fig. 11, estimated for 
that particular field, as described below.

The question for everyone who is considering either an 
increase in plot size to achieve a decrease in variance, or a 
decrease in plot size to reduce the experimental area, is, “where 
are my experiments located on this curve?” Lin and Binns (1984, 
1986) used Smith’s Law to develop an empirical method for 
estimating the impact of changes in plot size on experimental 
error variances. They developed a series of simple post-analysis 
computations from any blocking design, allowing researchers 

to compare numerous experimental designs for future experi-
ments based on varying plot size, number of treatments (block 
size), number of replicates (blocks), and total experiment size. 
This method is focused on empirical estimation of b, Smith’s 
coefficient of soil heterogeneity, leading to some generalizations. 
If b < 0.2, increase the number of replicates or blocks, utilizing 
incomplete block designs if the number of treatments is large. 
Reductions in plot size can be advantageous but only if they 
allow an increase in the number of replicates. If b > 0.7, increas-
ing the plot size is likely to be more cost effective than increasing 
the number of replicates. If 0.2 < b < 0.7, increasing either or 
both plot size and number of replicates should be effective.

Because these inferences are derived from statistics estimated 
from ANOVA or mixed models output, they represent random 
variables that are subject to errors of estimation, such as sam-
pling variation and environmental effects. Their greatest utility 
will probably derive from many years of experimentation at a 
site maintaining historical records of estimates of b, along with 
critical data such as field number, orientation within the field, 
and basic experimental design characteristics, such as the num-
ber of replicates, number of treatments, block size, and plot size.

SUMMARY AND CONCLUSIONS
Biological research is expensive, with monetary costs to 

granting agencies and emotional costs to researchers. As such, 
biological researchers should always follow the mantra, “fail-
ure is not an option.” A failed experimental design is gener-
ally manifested as an experiment with high P values, leaving 
the researcher with uncertain or equivocal conclusions: are 
the treatments really not different from each other, is my 
experimental design faulty due to poor planning and decision 
making, or was there some unknown and unseen disturbance 
that occurred to the experiment, causing errors to be inflated? 
Rarely can these questions be answered when P values are high, 
resulting in unpublishable results and wasted time and money. 
To borrow an experimental design term, these causal explana-
tions are confounded with each other when treatment effects 
are nonsignificant. It is generally impossible to assign cause to 
one or the other explanation.

Researchers who have the benefit of long-term research 
results, accumulated from many years of research at a particular 
site or on a defined group of subjects, have access to a wealth 
of data that can be used for planning purposes. Such a data-
base can be used to derive accurate estimates of variances and 
expectations for treatment mean differences, empowering the 
researcher to conduct meaningful power analyses. Resource 
allocation exercises, combined with the estimation of hetero-
geneity coefficients, can guide decisions as to the optimum 
distribution of various forms of replication, plot size, block size 
(number of treatments per block), and block orientation. Many 
of the computations that are required to develop these infer-
ences are fairly simple and routine, making it simple and easy to 
maintain a spreadsheet or database that summarizes the experi-
mental design implications from all experiments with common 
goals and measurement variables.

For young researchers who do not have access to such a data-
base, the challenge of increasing the probability of success for 
experimental designs is formidable. While field sites may appear 
uniform, experience tells us that they are probably nonuniform 

Fig.	11.	Graphical	illustration	of	Smith’s	Law	(Smith,	1938),	
demonstrating	the	empirical	relationship	between	variance	per	unit	and	
plot	size	in	agronomic	field	experiments.
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and that patterns of spatial variability cannot be predicted with-
out years of trial and error. My advice to researchers in this situ-
ation is to follow a few basic guidelines in your early years:

•	 Become	reasonably	proficient	in	experimental	design	and	
data analysis or become good friends with someone who has 
this qualification and can benefit from working with you.

•	 Begin	by	designing	small	experiments	with	relatively	large	
experimental units, as large as you feel you can handle with 
labor and machinery.

•	 Always	conduct	a	thorough	power	analysis	before	
designing every experiment, even if you have to make 
guesses about parameter estimates.

•	 If	you	must	design	large	experiments,	use	incomplete	block	
designs that are simple to set up and analyze but sufficiently 
flexible to generate small blocks that can be arranged to 
account for bidirectional gradients in the field.

•	 Begin	maintaining	the	database	suggested	above.

•	 Do	not	become	complacent.	Push	yourself	beyond	
your current comfort zone. Stretch the limits of your 
imagination, knowledge base, and experiences.

•	 “Come	on	you	raver,	you	seer	of	visions,	come	on	you	painter,	
you piper, you prisoner, and shine!” (Waters et al., 1975).

APPENDIX 1
SAS code to compute Tukey’s test for nonadditivity in a ran-

domized complete block design. The test is computed in two parts: 
(1) output the predicted values from the mixed models analysis, 
then (2) square the predicted values and include this term as a 
single-degree-of-freedom regressor variable (covariate) as a test for 
multiplicative block and treatment effects (Sahai and Ageel, 2000). 

data a; infile ‘tukey.dat’;
input rep block trt y;
proc mixed; class trt;
model pcb = trt / outpred=x;
random block;
data x; set x;
p2=pred*pred;
proc mixed; class trt;
model pcb = trt p2;
random block;

APPENDIX 2
This SAS code to estimate the power of a hypothesis test has 

the following parameters: treatment means = 95 and 100, vari-
ance components = 5 and 10 (experimental error and sampling 
error, respectively), r = 4 replicates, s = 2 observational units 
per experimental unit, and the assumption of normally distrib-
uted errors (adapted from Gbur et al., 2012).

options nocenter mprint;
data a; input trt y;
do rep=1 to 4 by 1;

do samples=1 to 2 by 1;
output;
end;
end;
datalines;
1 95
2 100
run;
proc glimmix; class trt rep; 
model y = trt;
random rep(trt);
parms (5)(10) / hold=1,2;
ods output tests3=power_terms;
data power;
set power_terms;
alpha=0.05;
ncparm=numdf*Fvalue;
F_critical=finv(1–alpha, numdf, dendf, 0);
power=1–probf(F_critical, numdf, dendf, ncparm);
proc print;
run;

APPENDIX 3
The SAS code from Appendix 1 is embedded in a macro 

that allows power to be estimated for a range of experimental 
designs with four to eight experimental units per treatment 
(rep, repl, repmax) and two to four observational units per 
experimental unit (obs, obsv, obsmax).

options nocenter mprint;
%macro one(obsmax,repmax);
data a;
%do obsv=2 %to &obsmax;
group1=&obsv;
%do repl=2 %to &repmax;
group2=&repl;
do obs=2 to &obsv by 1;
do rep=4 to &repl by 1;
do trt=0 to 1 by 1;
output;
end;
end;
end;
%end;
%end;
%mend one;
%one(4,8);          /*    change values here     */
run;
proc sort; by group1 group2;
data b; set a; by group1 group2;
if trt=0 then y=95;
if trt=1 then y=100;
run;
proc glimmix; class trt rep; by group1 group2;
model y = trt;
random rep(trt);
parms (5)(10) / hold=1,2;
ods output tests3=power_terms;
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data power;
set power_terms;
alpha=0.05;
ncparm=numdf*Fvalue;
F_critical=finv(1–alpha, numdf, dendf, 0);
power=1–probf(F_critical, numdf, dendf, ncparm);
proc print;
run;

APPENDIX 4
This SAS code to estimate the power of a hypothesis test has 

the following parameters: treatment means = 9 and 10, vari-
ance components = 0.02 and 0.2 (treatment ´ location interac-
tion and experimental error, respectively), r = 4 to 20 replicates, 
l = 2 to 6 locations, and the assumption of normally distributed 
errors (adapted from Gbur et al., 2012).

options nocenter mprint;
%macro two(locmax,repmax);
data a;
%do locn=2 %to &locmax;
group1=&locn;
%do repl=4 %to &repmax;
group2=&repl;
do loc=2 to &locn by 1;
do rep=4 to &repl by 1;
do trt=0 to 1 by 1;
output;
end;
end;
end;
%end;
%end;
%mend two;
%two(6,20);          /*   change here     */
run;
proc sort; by group1 group2;
data b; set a; by group1 group2;
if trt=0 then y=9;
if trt=1 then y=10;
run;
proc glimmix; class location trt rep; by group1 group2;
model y = trt;
random trt*location;
parms (0.02)(0.2) / hold=1,2;
ods output tests3=power_terms;
data power;
set power_terms;
alpha=0.05;
ncparm=numdf*Fvalue;
F_critical=finv(1–alpha, numdf, dendf, 0);
power=1–probf(F_critical, numdf, dendf, ncparm);
proc print;
run;
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