Studying and Understanding Root Architecture: the 5W's How?

Fertility of the Minds

Dan McDonald, President and Co-founder, Phenotype Screening Corporation

OUTLINE

- Who?
- How?
- When?
- What?
- Where?
- Why?

Who?

RootViz FS Imaging System

Root Lab

How?: Our X-ray Imaging Concept

X-ray Camera

How is the Entire Root Volume Captured in a Single Image?

All roots in the measurement volume are captured in the image; even roots normally hidden by other roots.

When?

- Seed (Internal Structure, Viability, Vigor)
- Germination (Water Uptake Dynamics)
- Emergence (Seedling Vigor, Phenes, Plasticity)
- Vegetative Growth (Root System Architecture)
- Reproductive Stage (RSA Foundation)
- Product Development, Processing and Handling

Let's look at some examples

Maize Seedling Phenes and Vigor

What?

- Plant Height
- Stalk Diameter
- Chlorophyll Content
- Vegetative Development Stage
- Dry Biomass
 - Shoot, Leaves
 - Fruit
 - Root
- RSA
 - Global Traits
 - Depth Traits

Each Root Size Class Has a Unique Shape and Distribution

Soft-tissue X-ray Imaging Used to Compare Root Development Over Time

Treated

Quantification From X-ray Images to Study Root Development Over Time

Comparison of Total Root Length (m) Growth Through Time

Comparison of End of Experiment Root System Dry Weight Biomass

Week Six Comparison of Below Ground Biomass (g)

Total Root Cross-sectional Area by Depth

Large Roots

Coarse Roots

Medium Roots

Fine Roots

Top Graphs Untreated Bottom Graphs Treated

Where?

Field

- Greenhouse
- Root Lab
- Germination paper, gels

Roots Operate in Dynamic Environment

Why?

- Germplasm Improvement
- Process Improvement
- Agronomic Practice Improvement
- Treatment Enhancements

Let's look at an example

GxExM

Why? Interpretation of Field Trial Results

Why? An Ideal Treatment

1.4 R 1.2 е Y 1 0.8 а e 0.6 0.4 d ν 0.2 е 0 1 2 8 9 10 11 3 6 **Increasing Plant Stress**

Yield as a Function of Plant Stress

Treated Untreated

Our Hypothesis About This Biostimulant

Increasing Plant Stress

Shape of curve will vary by formulation and:

Species Hybrid or variety "Technology traits" *"Seed protection treatments" Seed vigor Type, magnitude and duration of external stress*

Yield Results Ordered by Site Stress

2013 Field Sites and Yield Data Ordered by Increasing Stress

Yield Results Ordered by Site Stress

2013 Field Sites and Yield Data Ordered by Increasing Stress

2012 Drought Stress Across States

In Conclusion:

- Root system architecture is best understood in terms of both space and time.
- The RSA represents a cost / benefit ratio to the plant.
- The root system represents the most genetic plasticity of all the plant organs. (Opportunistic)
- Plants "react" via internal chemical communication. They are naïve communicators.

ExGxM

